93

Role of Endophytes, Plant Growth Promoting Rhizobacteria

Nakmee, P. S., Techapinyawat, S., & Ngamprasit, S., (2016). Comparative potentials of native

arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor

Linn. Agric. Nat. Resour., 50, 173–178.

Nanda, S., Rout, E., & Joshi, R. K., (2016). Curcuma longa mitogen-activated protein kinase

6 (ClMPK6) stimulates the defense response pathway and enhances the resistance to

necrotrophic fungal infection. Plant. Mol. Biol. Report., 34, 886–898.

Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A., (2014). Increased

drought stress resilience of maize through endophytic colonization by Burkholderia

phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot., 97, 30–39.

Naya, L., Ladrera, R., Ramos, J., Gonzalez, E. M., Arrese-Igor, C., Minchin, F. R., & Becana,

M., (2007). The response of carbon metabolism and antioxidant defenses of alfalfa nodules

to drought stress and to the subsequent recovery of plants. Plant Physiol., 144, 1104–1114.

Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G., (2013). Drought tolerance in wheat. Scientific

World Journal, 2013, 1–12.

Nguvo, K. J., & Gao, X., (2019). Weapons hidden underneath: Bio-control agents and their

potentials to activate plant induced systemic resistance in controlling crop Fusarium

diseases. J. Plant. Dis. Prot., 126, 177–190.

Nia, S. H., Zarea, M. J., Rejali, F., & Varma, A., (2012). Yield and yield components of wheat

as affected by salinity and inoculation with Azospirillum strains from saline or non-saline

soil. J. Saudi Soc. Agric. Sci., 11, 113–121.

Noctor, G., & Foyer, C. H., (1998). Ascorbate and glutathione: Keeping active oxygen under

control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 249–279.

Olson, P. A., Thingstrub, I., Jakobsen, I., & Baath, E., (1999). Estimation of the biomass of

arbuscular mycorrhizal fungi in a linseed field. Soil Biol. Biochem., 31, 1879–1887.

Ortiz, N., Armada, E., Duque, E., Roldan, A., & Azcón, R., (2015). Contribution of arbuscular

mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil

conditions: Effectiveness of autochthonous or allochthonous strains. J. Plant. Physiol., 174,

87–96.

Pan, X., Qin, Y., & Yuan, Z., (2018). Potential of a halophyte-associated endophytic fungus

for sustaining Chinese white poplar growth under salinity. Symbiosis., 76, 109–116.

Pandey, V., Ansari, M. W., Tula, S., Yadav, S., Sahoo, R. K., Shukla, N., Bains, G., et al.,

(2016). Dose dependent response of Trichoderma harzianum in improving drought

tolerance in rice genotypes. Planta, 243, 1251–1264.

Pedranzani, H., Rodríguez-Rivera, M., Gutierrez, M., Porcel, R., Hause, B., & Ruiz-Lozano,

J. M., (2015). Arbuscular mycorrhizal symbiosis regulates physiology and performance

of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and

jasmonate levels. Mycorrhiza., 26, 141–152.

Rakshapal, S., Sumit, K. S., Rajendra, P. P., & Alok, K., (2013). Technology for improving

essential oil yield of Ocimum basilicum L. (sweet basil) by application of bioinoculant

colonized seeds under organic field conditions. Ind. Crops Prod., 45, 335–342.

Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J., & Henson, J. M., (2002).

Thermotolerance generated by plant/ fungal symbiosis. Science, 298, 1581.

Ren, A., Gao, Y., Zhang, L., & Xie, F., (2006). Effects of cadmium on growth parameters of

endophyte-infected endophyte-free ryegrass. J. Plant Nutr. Soil Sci., 169, 857–860.

Rodriguez, R. J., Henson, J., Volkenburgh, E. V., Hoy, M., Wright, L., Beckwith, F., Kim, Y.

O., & Redman, R. S., (2008). Stress tolerance in plants via habitat-adapted symbiosis. ISME

J., 2, 404–416.