93
Role of Endophytes, Plant Growth Promoting Rhizobacteria
Nakmee, P. S., Techapinyawat, S., & Ngamprasit, S., (2016). Comparative potentials of native
arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor
Linn. Agric. Nat. Resour., 50, 173–178.
Nanda, S., Rout, E., & Joshi, R. K., (2016). Curcuma longa mitogen-activated protein kinase
6 (ClMPK6) stimulates the defense response pathway and enhances the resistance to
necrotrophic fungal infection. Plant. Mol. Biol. Report., 34, 886–898.
Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A., (2014). Increased
drought stress resilience of maize through endophytic colonization by Burkholderia
phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot., 97, 30–39.
Naya, L., Ladrera, R., Ramos, J., Gonzalez, E. M., Arrese-Igor, C., Minchin, F. R., & Becana,
M., (2007). The response of carbon metabolism and antioxidant defenses of alfalfa nodules
to drought stress and to the subsequent recovery of plants. Plant Physiol., 144, 1104–1114.
Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G., (2013). Drought tolerance in wheat. Scientific
World Journal, 2013, 1–12.
Nguvo, K. J., & Gao, X., (2019). Weapons hidden underneath: Bio-control agents and their
potentials to activate plant induced systemic resistance in controlling crop Fusarium
diseases. J. Plant. Dis. Prot., 126, 177–190.
Nia, S. H., Zarea, M. J., Rejali, F., & Varma, A., (2012). Yield and yield components of wheat
as affected by salinity and inoculation with Azospirillum strains from saline or non-saline
soil. J. Saudi Soc. Agric. Sci., 11, 113–121.
Noctor, G., & Foyer, C. H., (1998). Ascorbate and glutathione: Keeping active oxygen under
control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 249–279.
Olson, P. A., Thingstrub, I., Jakobsen, I., & Baath, E., (1999). Estimation of the biomass of
arbuscular mycorrhizal fungi in a linseed field. Soil Biol. Biochem., 31, 1879–1887.
Ortiz, N., Armada, E., Duque, E., Roldan, A., & Azcón, R., (2015). Contribution of arbuscular
mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil
conditions: Effectiveness of autochthonous or allochthonous strains. J. Plant. Physiol., 174,
87–96.
Pan, X., Qin, Y., & Yuan, Z., (2018). Potential of a halophyte-associated endophytic fungus
for sustaining Chinese white poplar growth under salinity. Symbiosis., 76, 109–116.
Pandey, V., Ansari, M. W., Tula, S., Yadav, S., Sahoo, R. K., Shukla, N., Bains, G., et al.,
(2016). Dose dependent response of Trichoderma harzianum in improving drought
tolerance in rice genotypes. Planta, 243, 1251–1264.
Pedranzani, H., Rodríguez-Rivera, M., Gutierrez, M., Porcel, R., Hause, B., & Ruiz-Lozano,
J. M., (2015). Arbuscular mycorrhizal symbiosis regulates physiology and performance
of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and
jasmonate levels. Mycorrhiza., 26, 141–152.
Rakshapal, S., Sumit, K. S., Rajendra, P. P., & Alok, K., (2013). Technology for improving
essential oil yield of Ocimum basilicum L. (sweet basil) by application of bioinoculant
colonized seeds under organic field conditions. Ind. Crops Prod., 45, 335–342.
Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J., & Henson, J. M., (2002).
Thermotolerance generated by plant/ fungal symbiosis. Science, 298, 1581.
Ren, A., Gao, Y., Zhang, L., & Xie, F., (2006). Effects of cadmium on growth parameters of
endophyte-infected endophyte-free ryegrass. J. Plant Nutr. Soil Sci., 169, 857–860.
Rodriguez, R. J., Henson, J., Volkenburgh, E. V., Hoy, M., Wright, L., Beckwith, F., Kim, Y.
O., & Redman, R. S., (2008). Stress tolerance in plants via habitat-adapted symbiosis. ISME
J., 2, 404–416.